Part Number Hot Search : 
SK5819 1D44D MJ15020G 2SC55 SM102 BTM7750G 200N6 1285B
Product Description
Full Text Search
 

To Download AMMC-5024-W50 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ammc-5024 30 khz C 40 ghz traveling wave amplifer data sheet features ? wide frequency range: 30 khz C 40 ghz ? high gain: 16 db ? gain fatness: 0.75 db ? return loss: input: 13 db, output: 13 db ? medium power: p-1db = 22.5 dbm at 22 ghz ? low noise fgure: 4.6 db at 26 ghz applications ? communication systems ? microwave instrumentation ? optical systems ? broadband applications requiring fat gain and group delay with excellent input and output port matches over the 30 khz and 40 ghz frequency range absolute maximum ratings [1] symbol parameters/conditions units min. max. v dd positive drain voltage v 10 i dd total drain current ma 340 v g1 first gate voltage v -9.5 0 i g1 first gate current ma -38 +1 v g2 second gate voltage v -3.5 +4 i g2 second gate current ma -20 p in cw input power dbm 17 t ch operating channel temperature c +150 t b operating backside temperature c -55 t stg storage temperature c -65 +165 t max max. assembly temp (60 sec max) c +300 notes: 1. absolute maximum ratings for continuous operation unless otherwise noted. description avago technologies' ammc-5024 is a broadband phemt gaas mmic twa designed for medium output power and high gain over the full 30 khz to 40 ghz frequency range. the design employs a 9-stage,cascade-connected fet structure to ensure fat gain and power as well as uni - form group delay. e-beam lithography is used to produce uniform gate lengths of 0.15 m m and mbe technology as - sures precise semiconductor layer control. for improved reliability and moisture protection, the die is passivated at the active areas. chip size: 2350 x 1050 m (92.5 x 41.3 mils) chip size tolerance: 10 m (0.4 mils) chip thickness: 100 10 m (4 0.4 mils) pad dimensions: 80 x 80 m (2.95 0.4 mils)
2 ammc-5024 dc specifcations/physical properties [1] symbol parameters and test conditions units min. typ. max. i dss saturated drain current (v dd =7 v, v g1 =0 v, v g2 =open circuit) ma 265 350 385 v p first gate pinch-of voltage (v dd =7 v, i dd =30 ma, v g2 =open circuit) v -8.2 v g2 second gate self-bias voltage (v dd =7 v, i dd = 200 ma, v g2 =open circuit) v 2.75 i dsmin first gate minimum drain current ma 47 (v g1 ) (v dd =7 v, v g1 =-7 v, v g2 =open circuit) i dsmin second gate minimum drain current ma 105 (v g2 ) (v dd =7 v, v g1 =0 v, v g2 = -3.5 v) ch-b thermal resistance [2] (backside temperature, t b = 25c) c/w 16.2 rf specifcations for high gain and low power applications [2, 3] (v dd =4 v, i dd (q)=160 ma, z in = z o =50) symbol parameters and test conditions units min. typ. max. |s 21 | 2 small-signal gain db 17.5 ? |s 21 | 2 small-signal gain flatness db 1.5 rl in minimum input return loss db 13 rl out minimum output return loss db 13 |s 12 | 2 isolation db 30 p -1db output power @ 1 db gain compression f = 22 ghz dbm 17.3 p sat saturated output power f = 22 ghz dbm 20.5 oip3 output 3 rd order intercept point, dbm 22.5 rf in1 = rf in2 = 2 dbm, f = 22 ghz, ? f = 2 mhz nf noise figure f = 26 ghz db 3.7 f = 40 ghz db 5.5 notes: 1. backside temperature t b = 25c unless otherwise noted. 2. channel to board thermal resistance is measured using qfi method. 3. 100% on-wafer rf test is done at frequency = 2, 10, 20, 30 and 40 ghz, except as noted. rf specifcations for high power applications [2, 3] (v dd =7 v, i dd (q)=200 ma, z in = z o =50 symbol parameters and test conditions units min. typ. max. |s 21 | 2 small-signal gain db 14 16 18 ? |s 21 | 2 small-signal gain flatness db 0.75 2 rl in input return loss db 12 16.9 rl out output return loss db 10 16.8 |s 12 | 2 isolation db 26 28 p -1db output power @ 1 db gain compression f = 22 ghz dbm 21 22.5 p sat saturated output power f = 22 ghz dbm 23 24.5 oip3 output 3 rd order intercept point, dbm 27 30 rf in1 = rf in2 = 2 dbm, f = 22 ghz, ? f = 2 mhz nf noise figure (v ds = 3v, i ds = 140 ma) f = 26 ghz db 4.6 6.5 f = 40 ghz db 7.2 9
3 ammc-5024 typical performance (t chuck = 25c, v dd = 7v, i dd = 200 ma, v g2 = open, z 0 = 50) figure 1. gain and reverse isolation. frequency (ghz) s21 (db) s12 (db) 0 5 0 10 20 30 40 20 18 16 14 12 10 8 6 4 2 0 0 -20 -40 -60 -80 s21(db) s12(db) figure 2. return loss (input and output). frequency (ghz) return loss (db) 0 5 0 10 20 30 40 0 -5 -10 -15 -20 -25 -30 s11(db) s22(db) figure 3. output power (p-1 and p-3). frequency (ghz) p-1, p-3 (dbm) 0 5 0 10 20 30 40 30 25 20 15 10 5 0 p-1 p-3 figure 4. group delay. frequency (ghz) td (ns) 0 5 0 10 20 30 40 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 figure 5. noise figure. frequency (ghz) noise figure (db) 0 5 0 10 20 30 40 10 8 6 4 2 0 figure 6. output ip3. frequency (ghz) oip3 (dbm) 0 5 0 10 20 30 40 40 30 20 10 0
4 ammc-5024 typical scattering parameters [1] (t chuck = 25c, v dd = 7v, i dd = 200 ma, z in = z out = 50) freq. s 11 s 21 s 12 s 22 ghz db mag phase db mag phase db mag phase db mag phase 0.05 -26.524 0.047 -174.370 16.526 6.703 179.390 -66.134 0.000 -56.514 -29.620 0.033 7.766 1 -24.941 0.057 -154.440 16.375 6.588 155.660 -61.862 0.001 -109.670 -29.934 0.032 12.796 2 -21.885 0.080 -146.320 16.277 6.514 133.110 -55.350 0.002 -132.750 -26.919 0.045 18.718 3 -19.412 0.107 -149.270 16.170 6.434 110.580 -51.048 0.003 -153.970 -25.153 0.055 10.362 4 -17.725 0.130 -157.970 16.016 6.321 88.271 -48.620 0.004 -174.570 -24.391 0.060 0.922 5 -16.970 0.142 -168.560 15.868 6.214 66.412 -46.356 0.005 165.210 -24.068 0.063 -7.610 6 -16.940 0.142 -179.420 15.731 6.117 44.780 -44.560 0.006 144.510 -23.775 0.065 -12.684 7 -17.741 0.130 170.600 15.646 6.058 23.511 -42.719 0.007 123.530 -22.940 0.071 -18.420 8 -19.505 0.106 163.170 15.636 6.051 2.105 -41.197 0.009 102.140 -21.619 0.083 -28.987 9 -22.752 0.073 163.190 15.679 6.081 -19.628 -39.902 0.010 80.129 -20.245 0.097 -47.192 10 -25.795 0.051 -165.530 15.733 6.119 -42.046 -38.851 0.011 58.121 -19.716 0.103 -73.520 11 -21.613 0.083 -134.230 15.705 6.099 -64.823 -37.914 0.013 36.356 -20.130 0.099 -109.900 12 -17.435 0.134 -136.040 15.558 5.997 -87.590 -37.130 0.014 15.803 -21.644 0.083 -157.830 13 -14.804 0.182 -147.840 15.381 5.876 -109.420 -36.350 0.015 -4.845 -22.284 0.077 137.330 14 -13.213 0.218 -163.030 15.307 5.826 -130.680 -35.589 0.017 -25.521 -20.256 0.097 76.041 15 -12.628 0.234 -179.470 15.351 5.855 -152.100 -34.692 0.018 -45.793 -18.092 0.125 29.951 16 -12.989 0.224 163.010 15.496 5.954 -174.100 -33.794 0.020 -67.515 -16.431 0.151 -7.571 17 -14.171 0.196 147.400 15.663 6.070 163.120 -32.937 0.023 -90.266 -15.737 0.163 -40.792 18 -16.678 0.147 135.040 15.812 6.174 139.670 -32.208 0.025 -113.940 -15.813 0.162 -74.475 19 -20.641 0.093 130.070 15.870 6.216 115.610 -31.690 0.026 -137.810 -16.780 0.145 -106.600 20 -23.782 0.065 154.470 15.863 6.211 91.770 -31.208 0.028 -161.750 -18.810 0.115 -142.950 21 -21.425 0.085 177.240 15.823 6.182 67.954 -30.781 0.029 174.640 -21.397 0.085 169.440 22 -19.193 0.110 173.670 15.856 6.206 44.285 -30.231 0.031 151.020 -23.661 0.066 104.260 23 -18.288 0.122 156.910 15.922 6.253 20.329 -29.783 0.032 126.440 -21.101 0.088 34.057 24 -19.046 0.112 138.050 16.022 6.326 -4.276 -29.336 0.034 100.950 -18.085 0.125 -13.560 25 -21.832 0.081 114.120 16.122 6.399 -29.641 -28.991 0.036 75.101 -15.617 0.166 -54.765 26 -27.570 0.042 67.164 16.137 6.410 -55.651 -28.757 0.036 47.960 -14.258 0.194 -92.329 27 -28.076 0.039 -50.074 16.057 6.351 -82.011 -28.622 0.037 20.890 -13.705 0.206 -131.060 28 -20.068 0.099 -96.000 15.869 6.215 -108.060 -28.763 0.036 -6.265 -13.717 0.206 -171.110 29 -16.785 0.145 -121.770 15.675 6.078 -133.780 -28.808 0.036 -33.072 -14.430 0.190 145.610 30 -15.212 0.174 -145.820 15.567 6.003 -158.990 -28.853 0.036 -59.523 -15.005 0.178 97.895 31 -14.889 0.180 -168.310 15.661 6.068 175.180 -28.759 0.036 -86.846 -15.146 0.175 46.328 32 -16.789 0.145 173.110 15.788 6.158 147.730 -28.591 0.037 -115.960 -14.682 0.184 -10.820 33 -18.936 0.113 166.700 15.810 6.173 118.780 -28.536 0.037 -146.370 -13.588 0.209 -62.908 34 -19.985 0.100 177.880 15.612 6.034 89.206 -28.676 0.037 -177.890 -12.883 0.227 -111.430 35 -19.130 0.111 179.680 15.269 5.800 60.446 -28.992 0.036 151.190 -12.719 0.231 -155.460 36 -18.210 0.123 160.620 15.025 5.640 32.215 -29.214 0.035 120.660 -13.861 0.203 164.720 37 -18.457 0.119 134.410 14.926 5.576 3.374 -29.344 0.034 90.933 -15.387 0.170 122.630 38 -22.391 0.076 91.975 14.869 5.539 -27.424 -29.287 0.034 60.092 -19.170 0.110 84.484 39 -24.387 0.060 23.468 14.636 5.393 -59.455 -29.189 0.035 27.357 -30.763 0.029 20.516 40 -22.649 0.074 -37.468 14.174 5.113 -92.328 -29.513 0.033 -6.508 -24.452 0.060 -146.250 41 -20.369 0.096 -74.314 13.581 4.776 -124.820 -29.849 0.032 -39.965 -17.619 0.132 165.520 42 -20.473 0.095 -84.567 12.946 4.439 -157.360 -30.351 0.030 -73.488 -16.143 0.156 133.010 43 -20.560 0.094 -91.634 12.305 4.123 169.650 -30.858 0.029 -107.270 -16.259 0.154 99.260 44 -18.778 0.115 -92.252 11.524 3.769 136.220 -31.563 0.026 -142.290 -18.606 0.117 76.664 45 -19.072 0.111 -85.034 10.748 3.447 103.130 -32.440 0.024 -175.820 -24.603 0.059 93.515 46 -18.104 0.124 -73.258 10.059 3.184 69.590 -33.098 0.022 150.230 -21.717 0.082 135.190 47 -14.701 0.184 -64.708 9.479 2.978 34.467 -33.500 0.021 119.650 -15.939 0.160 122.900 48 -11.446 0.268 -65.771 8.863 2.774 -3.117 -33.995 0.020 83.945 -13.445 0.213 114.170 49 -9.005 0.355 -76.848 8.007 2.514 -42.656 -33.996 0.020 49.390 -12.285 0.243 89.641 50 -6.637 0.466 -89.734 6.902 2.214 -83.972 -34.691 0.018 15.240 -11.324 0.272 78.671 note: 1. data obtained from on-wafer measurements.
5 ammc-5024 typical performance (t chuck = 25c, v dd = 4v, i dd = 160 ma, v g2 = open, z 0 = 50) figure 7. gain and reverse isolation. frequency (ghz) s21 (db) s12 (db) 0 5 0 20 40 20 15 10 5 0 0 -20 -40 -60 -80 s21(db) s12(db) figure 8. return loss (input and output). frequency (ghz) return loss (db) 0 5 0 10 20 30 40 0 -5 -10 -15 -20 -25 -30 s11(db) s22(db) figure 9. output power (p-1 and p-3). frequency (ghz) p-1, p-3 (dbm) 0 5 0 10 20 30 40 30 25 20 15 10 5 0 p-1 p-3 figure 10. group delay. frequency (ghz) td (ns) 0 5 0 10 20 30 40 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 figure 11. noise figure. frequency (ghz) noise figure (db) 0 5 0 10 20 30 40 10 8 6 4 2 0 figure 12. output ip3. frequency (ghz) oip3 (dbm) 0 5 0 10 20 30 40 30 25 20 15 10 5 0
6 ammc-5024 typical scattering parameters [1] (t chuck = 25c, v dd = 4v, i dd = 160 ma, z in = z out = 50) freq. s 11 s 21 s 12 s 22 ghz db mag phase db mag phase db mag phase db mag phase 0.05 -26.046 0.050 -175.110 16.908 7.005 179.610 -59.336 0.001 -61.940 -32.459 0.024 16.703 1 -25.998 0.050 -164.940 16.786 6.907 156.790 -65.942 0.001 -108.900 -34.057 0.020 5.690 2 -24.392 0.060 -151.920 16.727 6.860 135.230 -59.134 0.001 -128.490 -31.519 0.027 17.159 3 -22.084 0.079 -147.760 16.657 6.805 113.560 -54.398 0.002 -158.090 -30.113 0.031 12.590 4 -20.032 0.100 -152.230 16.538 6.713 92.010 -52.371 0.002 -178.300 -29.546 0.033 10.367 5 -18.871 0.114 -160.550 16.419 6.621 70.825 -49.621 0.003 161.460 -28.527 0.037 9.842 6 -18.430 0.120 -170.290 16.305 6.535 49.938 -47.520 0.004 141.190 -26.705 0.046 8.417 7 -18.727 0.116 179.750 16.225 6.475 29.369 -45.659 0.005 119.280 -24.546 0.059 -0.474 8 -19.934 0.101 170.600 16.227 6.476 8.799 -43.865 0.006 97.498 -22.558 0.074 -17.521 9 -22.656 0.074 164.210 16.287 6.522 -12.033 -42.482 0.008 74.972 -21.031 0.089 -41.715 10 -27.478 0.042 -179.640 16.384 6.595 -33.532 -41.201 0.009 53.471 -20.499 0.094 -72.840 11 -25.347 0.054 -126.840 16.410 6.614 -55.435 -40.162 0.010 31.594 -20.801 0.091 -112.770 12 -19.749 0.103 -120.480 16.336 6.559 -77.463 -39.239 0.011 10.910 -21.844 0.081 -161.860 13 -16.206 0.155 -131.310 16.209 6.464 -98.816 -38.327 0.012 -9.819 -22.131 0.078 138.490 14 -14.011 0.199 -146.840 16.158 6.425 -119.500 -37.323 0.014 -29.734 -20.818 0.091 82.104 15 -12.962 0.225 -164.520 16.210 6.464 -140.230 -36.407 0.015 -50.251 -19.513 0.106 36.945 16 -12.935 0.226 176.980 16.352 6.570 -161.440 -35.276 0.017 -72.076 -18.421 0.120 -0.979 17 -13.689 0.207 159.730 16.530 6.707 176.800 -34.270 0.019 -94.562 -18.158 0.124 -34.038 18 -15.570 0.167 143.690 16.717 6.853 154.440 -33.419 0.021 -118.010 -18.744 0.116 -67.232 19 -19.085 0.111 128.620 16.846 6.955 131.460 -32.607 0.023 -141.710 -20.205 0.098 -96.759 20 -25.363 0.054 133.080 16.926 7.020 108.520 -31.889 0.025 -166.020 -23.130 0.070 -128.700 21 -26.442 0.048 -165.970 16.965 7.051 85.461 -31.268 0.027 169.730 -27.569 0.042 -173.310 22 -20.900 0.090 -156.420 17.054 7.124 62.568 -30.682 0.029 145.660 -33.534 0.021 98.102 23 -18.349 0.121 -172.490 17.170 7.220 39.543 -30.022 0.032 121.250 -26.084 0.050 10.942 24 -17.560 0.132 168.580 17.320 7.345 16.078 -29.439 0.034 96.409 -21.809 0.081 -29.430 25 -18.343 0.121 145.730 17.534 7.528 -8.082 -28.885 0.036 70.972 -18.685 0.116 -66.154 26 -20.831 0.091 110.490 17.708 7.680 -32.996 -28.374 0.038 44.076 -16.869 0.143 -100.080 27 -25.482 0.053 47.234 17.813 7.774 -58.575 -27.893 0.040 17.025 -15.693 0.164 -136.500 28 -21.019 0.089 -43.397 17.786 7.750 -84.438 -27.722 0.041 -10.669 -15.062 0.177 -174.690 29 -15.842 0.161 -84.248 17.674 7.651 -110.030 -27.501 0.042 -38.170 -15.047 0.177 144.500 30 -13.096 0.221 -115.690 17.547 7.540 -134.660 -27.408 0.043 -65.246 -15.045 0.177 101.700 31 -11.817 0.257 -144.730 17.670 7.648 -159.020 -27.130 0.044 -92.100 -14.911 0.180 56.891 32 -12.588 0.235 -171.610 17.969 7.915 175.550 -26.768 0.046 -119.520 -14.657 0.185 6.430 33 -14.900 0.180 163.390 18.362 8.282 148.060 -26.185 0.049 -148.970 -13.556 0.210 -42.887 34 -21.159 0.088 161.170 18.588 8.500 118.310 -25.723 0.052 179.060 -12.691 0.232 -92.108 35 -20.309 0.097 -141.280 18.465 8.380 88.090 -25.559 0.053 145.960 -12.218 0.245 -138.540 36 -14.744 0.183 -158.220 18.201 8.130 59.059 -25.633 0.052 113.580 -13.056 0.222 -178.190 37 -12.538 0.236 170.230 18.066 8.004 30.963 -25.760 0.052 82.862 -14.378 0.191 143.400 38 -13.339 0.215 132.480 18.167 8.098 1.607 -25.749 0.052 52.499 -16.970 0.142 116.660 39 -15.011 0.178 78.005 18.276 8.200 -29.543 -25.454 0.053 20.356 -21.811 0.081 111.200 40 -16.105 0.157 6.891 18.189 8.118 -62.709 -25.424 0.054 -13.439 -20.840 0.091 134.530 41 -14.757 0.183 -61.000 17.917 7.868 -95.764 -25.415 0.054 -47.607 -16.035 0.158 118.260 42 -15.383 0.170 -108.170 17.784 7.748 -128.890 -25.467 0.053 -83.226 -15.120 0.175 80.564 43 -21.471 0.084 -141.240 17.922 7.872 -165.490 -25.277 0.054 -122.260 -16.069 0.157 25.234 44 -18.182 0.123 -72.748 17.442 7.449 151.790 -25.857 0.051 -166.580 -19.776 0.103 -75.636 45 -12.590 0.235 -105.520 15.750 6.130 110.450 -27.536 0.042 150.440 -14.233 0.194 -173.290 46 -13.269 0.217 -153.320 13.940 4.978 75.442 -29.470 0.034 112.520 -11.523 0.265 139.690 47 -20.284 0.097 126.900 12.983 4.458 40.022 -30.994 0.028 73.538 -10.251 0.307 102.000 48 -14.029 0.199 -5.310 11.793 3.887 -5.741 -33.295 0.022 27.040 -12.501 0.237 75.692 49 -9.656 0.329 -41.069 7.696 2.426 -50.048 -39.913 0.010 -10.430 -17.076 0.140 74.549 50 -5.683 0.520 -68.263 4.495 1.678 -69.558 -44.196 0.006 11.969 -12.434 0.239 98.012 note: 1. data obtained from on-wafer measurements.
7 ammc-5024 typical performance (over temperature and voltage ) figure 13. gain and voltage. frequency (ghz) gain (db) 0 5 0 10 20 30 40 25 20 15 10 5 0 7v/200ma 6v/187ma 5v/174ma 4v/160ma 3v/147ma figure 14. p-1 and voltage. frequency (ghz) p-1 (dbm) 0 5 0 10 20 30 40 30 25 20 15 10 5 0 7v/200ma 6v/187ma 5v/174ma 4v/160ma 3v/147ma figure 15. gain and return loss with temperature. frequency (ghz) s21, s11, and s22 (db) 0 5 0 10 20 30 40 20 10 0 -10 -20 -30 -40 s11/80 c s22/-40 c s21/25 c s22/80 c s22/-40 c s11/25 c s21/80 c s22/-40 c s22/25 c figure 16. p-1 and temperature, v dd =7v, i dd =200 ma. frequency (ghz) p-1 (dbm) 0 5 0 10 20 30 40 30 25 20 15 10 5 0 p-1/80 c p-1/25 c p-1/-40 c figure 17. noise figure and temperature at v dd =4v, i dd =160 ma. frequency (ghz) p-1 (dbm) 0 5 0 10 20 30 40 7 6 5 4 3 2 1 0 nf/-40 c nf/25 c nf/80 c figure 18. noise figure and voltage. frequency (ghz) noise figure (db) 0 5 0 10 20 30 40 8 6 4 2 0 7v/200 ma 6v/187 ma 5v/174 ma 4v/160 ma 3v/147 ma
8 biasing and operation ammc-5024 is biased with a single positive drain supply (v dd ) a negative gate supply (v g1 ). for best overall perfor - mance the recommended bias is v dd =7v and i dd = 200 ma. to achieve this drain current level, v g1 is typically between C2.5 to C3.5v. typically, dc current fow for v g1 is C10 ma. the ammc-5024 has a second gate bias (vg2) that may be used for gain control. when not being utilized, vg2 should be left open-circuited. this feature further enhances the versatility of applica - tions where variable gain over a broad bandwidth is necessary. this second gate bias (vg2) is connected to the gates of the upper fets in each cascode stage through a small de-queing resistor. the other end of the gate line is termi - nated in an on-chip resistive/diode divider network, which allows the second gate to self-bias. thus, with vg2 left open-circuited, the drain current is set by the (vg1) gate bias voltage applied to the lower fet in each stage. the nominal open circuit voltage for vg2 is approximately 2 volts. under this operating condition, maximum gain and power are achieved from the twa. by applying an external voltage to the second gate bias (vg2) less than the open-circuit potential, the drain volt - age on the lower fet can be decreased to a point where the lower fet enters the linear operating region. this reduces the current drawn by each stage. decreasing vg2 further will reduce the drain voltage on the lower fet to - wards zero while pinching of the upper fet in each stage. at larger negative values of vg2 (between 0 and -2.5 volts) the gain of the twa will decrease signifcantly. using the simplest form of assembly (figure 20), the device is capable of delivering fat gain over a 2 C 50 ghz range with a minimum of gain slope and ripple. however, this device is designed with dc coupled rf i/o ports, and operation may be extended to lower frequencies (<2 ghz) through the use of of-chip low-frequency extension circuitry and proper external biasing components. with low frequency bias extension it may be used in a variety of time-domain applications (through 40 gb/s). figure 21 shows a typical assembly confguration. when bypass capacitors are connected to the aux pads, the low frequency limit is extended down to the corner frequency determined by the bypass capacitor and the combination of the on-chip 50 ohm load and small de- queing resistor. at this frequency the small signal gain will increase in magnitude and stay at this elevated level down to the point where the c aux bypass capacitor acts as an open circuit, efectively rolling of the gain completely. the low frequency limit can be approximated from the following equation: f caux = 1 2 c aux (ro + r deq ) where: r o is the 50? gate or drain line termination resistor. r deq is the small series de-queing resistor and 10?. c aux is the capacitance of the bypass capacitor con - nected to the aux drain pad in farads. with the external bypass capacitors connected to the aux gate and aux drain pads, gain will show a slight increase between 1.0 and 1.5 ghz. this is due to a series combina - tion of c aux and the on chip resistance but is exaggerated by the parasitic inductance (l c ) of the bypass capacitor and the inductance of the bond wire (l d ). therefore the bond wire from the aux pads to the bypass capacitors should be made as short as possible. input and output rf ports are dc coupled; therefore, dc decoupling capacitors are required if there are dc paths. (do not attempt to apply bias to these pads.) rf bond connections should be kept as short as possible to reduce rf lead inductance which will degrade perfor - mance above 20 ghz. an optional output power detector network is also pro - vided. a >0.5 f capacitor is required for the det_out pad to expand power detection performance below 100 mhz. ground connections are made with plated through-holes to the backside of the device; therefore, ground wires are not needed.
9 figure 19. ammc-5024 schematic. gnd drain bias (vdd) nine identical vdd aux second gate first gate bias (vg1) rf_input det_out rf_output det_bias det_ref assembly techniques the backside of the mmic chip is rf ground. for microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electri - cally conductive epoxy [1,2] . for best performance, the topside of the mmic should be brought up to the same height as the circuit surrounding it. this can be accomplished by mounting a gold plated metal shim (same length as the mmic) under the chip which is of correct thickness to make the chip and adja - cent circuit the same height. the amount of epoxy used for the chip or shim attachment should be just enough to provide a thin fllet around the bottom perimeter of the chip. the ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. rf connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. a single bond wire is normally suf - fcient for single connections, however double bonding with 0.7mil gold wire will reduce series inductance. gold thermo-sonic wedge bonding is the preferred method for wire attachment to the bond pads. the recommended wire bond stage temperature is 150c 2c. caution should be taken to not exceed the absolute maxi - mum rating for assembly temperature and time. the chip is 100um thick and should be handled with care. this mmic has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). bonding pads and chip backside metallization are gold. this mmic is also static sensitive and esd precautions should be taken. eutectic attach is not recommended and may jeopardize reliability of the device. for more detailed information see avago technologies application note #5359 gaas mmic assembly and han - dling guidelines. notes: 1. ablebond 84-1 lml silver epoxy is recommended 2. eutectic attach is not recommended and may jeopardize reliability of the device
figure 21. ammc-5024 assembly diagram. v dd v g1 out in drain bias must be decoupled from rf to lowest operating frequency 4 nh inductor for operation to 2 ghz bond wire 100 pf capacitor gate is decoupled from rf. (bond wire length is not important) ordering information ammc-5024-w10 = 10 devices per tray AMMC-5024-W50 = 50 devices per tray for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subect to change. copyright 2005-2008 avago technologies. all rights reserved. obsoletes 5989-3931 av02-0632 - september 8, 2008 figure 20. ammc-5024 bonding pad locations. (dimensions in micrometers) 1 0 5 0 9 6 0 r f i n p u t 2 3 5 0 r f o u t p u t 9 0 7 3 3 9 0 2 3 5 0 0 1 6 5 4 1 5 5 5 0 8 3 0 v g 1 v d d _ a u x d e t _ b i a s v d d 2 2 6 0 g n d 1 2 7 0 d e t _ o u t p u t d e t _ r e f e r e n c e v g 2 4 8 5 2 2 5 0 2 0 8 0 g n d


▲Up To Search▲   

 
Price & Availability of AMMC-5024-W50

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X